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Abstract

The equivalent beam model is widely used for predicting strength and vibration
of a ship hull in a preliminary analysis. It can also be used for checking results in a large
finite element model and for parametric studies of ship behaviour. This method treats a
ship hull as a series of prismatic segments connected together. Each segment has its
sectional properties, real and virtual masses. The program SCRAP was developed at
Defence Research Establishment Atlantic for calculation of cross sectional constants and
estimation of mass properties. It prepares input data files for the finite element programs
VAST and TORSON and interprets the analytical results. SCRAP can be only used for
some specific sections at the present time. For arbitrarily oriented sections it may give an
incorrect shear centre and warping constant and thus the wrong stress distributions.

This report presents the mathematical derivations of the equations used for the
calculation of cross sectional constants and stress distributions of thin-walled sections. As
an improvement over the current SCRAP program, these equations are applicable to any
shape of cross section, both open and closed, and are independent of the orientation of
the cross section. A computer-oriented step-by-step procedure based on these equations
is outlined. Several examples are also presented to verify the procedure.

Resume

Dans une analyse prrliminaire, le module de poutre dquivalente est largement
utilis6 pour la prevision de la rdsistance et des vibrations d'une coque de navire. I1 peut
aussi Etre utilis6 pour vdrifier les rrsultats dans un module A 616ments finis de grande
dimension et dans des dtudes paramdtriques sur la tenue des navires. Dans la presente
mrthode, on consid~re qu'une coque de navire est constitute d'une sdrie de segments
prismatiques relids ensemble. Chaque segment poss~de ses proprirtfs de section, sa masse
rrelle et sa masse virtuelle. Le programme SCRAP a 6t6 6crit au Centre de recherches
pour la defense (Atlantique) en vue du calcul des constantes de section transversale et de
l'estimation des propridtrs de masse. I1 prepare les fichiers d'entrfe pour les programmes
A 616ments finis VAST et TORSON et il interpr~te les rrsultats analytiques. SCRAP ne
peut pour le moment Etre utilisd que pour certaines sections particulires. Dans le cas de
sections d'orientation arbitraire, il peut donner une constante de centre de cisaillement et
de gauchissement erron~e et, par consdquent, des distributions de contraintes erronfes.

Ce rapport montre comment on a drduit les dquations mathrmatiques utilis~es pour
calculer les constantes de section transversale et 6tablir les distributions de contraintes des
sections A pario mince. Ces 6quations constituent un perfectionnement par rapport au
programme SCRAP actuel : elles peuvent ftre appliqures A toutes les formes de section
transversale, ouvertes et fermres, et elles sont indrpendantes de l'orientation de la section
transeversale. On drcrit une mrthode pas A pas mrcanisre basre sur ces 6quations.
Plusieure exemples permettant de verifier la mdthode sont aussi prrsentfs.

ii



Contents

Abstract ii

Table of Contents ii.

List of Figures iv

Notations v

1. Introduction 1

2. Derivations 2

2.1 General Considerations 2

2.2 Pure Bending 4

2.3 Twisting 8

3. Numerical Procedure 12

4. Examples 17

5. Concluding Remarks 27

Appendix A - St-Venant Torsion 28

Appendix B - Open Section - Example 30

References 33

Aooeusion For

WTIS GRAI
DTIC TAB Q
Unannounced 0

' ~JUstlflcatilaL ,

DAstribut 7o s- -

Availability Cod%*
IllDist

DlCO



List of Figures

1. Sign conventions and coordinate systems 3

2. Single-cell box beam (Example 1) 17

3. Multi-cell section (Example 2) 22

iv



Notation

A area of closed section

A5  cross section area

b end of curvilinear coordinate

bi width of segment i

E Young's modulus

F function

G shear modulus

I , Iy moments of inertia along x and y axes respectively

I,,y product of inertia

warping constant

J St-Venant torsional constant

k segment number

Llength of segment

N axial force

NI My moment along x and y axes respectively

NM. bimoment

Q', Qy shear forces along x and y axes respectively

qb, q%, q. transverse, St-Venant and warping shear flows

q,, q," shear flows at beginnings of integration

qb°, q,,0  shear flows of open sections

S,. Sy, S static moments of a portion of cross section in x, y and 03 coordinates
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s curvilinear coordinate along wall profile

TIs, T, St-Venant, warping torsion moments

t thickness of wall

XC  centroid in X direction

xp centre of rotation in x direction

Y, centroid in Y direction

yp centre of rotation in y direction

w displacement in z direction

(X angle between tangent to s and O-x axis

y shear strain

TI displacement in x direction

displacement in y direction

ab, o. bending and warping normal stresses

) displacement in s axis

u , Q. quantities for calculating sectoriai coordinate
Q, Q 2

W3 sectorial coordinate

(P angle of rotation

vi



1. Introduction

The equivalent beam model is a simplified method widely use-, for predicting
strength and vibration of a ship hull in preliminary design. It can Xso be used for
parametric studies and for checking results in a large finite element model. The
equivalent beam method treats a ship hull as a series of prismatic segments connected
together. Each segment has its own sectional properties, real and virtual masses. By
utilizing different types of beam elements and numerical methods, stress distributions due
to various loadings and natural frequencies of the structures can be obtained.

The various beam elements in the finite element method are derived from different
assumptions, with or without shear deformation and/or longitudinal warping. For a ship
with large openings, such as a container ship, the lowest natural frequency of coupled
horizontal-torsional modes may be close to the lowest natural frequency of flexural
vibration modes, and the horizontal propeller forces may generate large torsional moment.
The shear deformation of the cross section of a ship hull also can be significant
depending on the depth to length ratio of the ship. Thus, the required sectional properties
for the subsequent numerical analysis are not only the moments of inertia and centroid,
but also the shear centre and torsion and warping constants.

The program SCRAP was developed by the Structural Mechanics Group of
Defence Research Establishment Atlantic (DREA) for calculating different sectional
constants, mass properties, preparing input data files for the finite element programs
VAST [ I] and TORSON [2] and interpreting the analytical results. The required sectional
properties for the general beam element in the finite element program VAST are the
moments of inertia, the torsion constant and the shear centre. An additional sectional
constant needed for the program TORSON is the warping constant. SCRAP is
documented in References 3 to 6.

The program SCRAP is efficient and user friendly but can only be used for
symmetric sections at the present time. It may give the incorrect shear centre and warping
constant for an arbitrarily oriented section and, consequently, invalid results for the
equivalent beam analyses. Because this program is unable to provide the correct shear
centre for arbitrarily oriented sections, the distribution of transverse shear flows is also
incorrect.

The available literature on the subject of calculating sectional constants and stress
distributions of arbitrarily oriented thin-walled sections tends to be incomplete and
problem specific [7,8]. This report presents complete mathematical derivations of the
equations used for the calculation of the cross sectional constants and stress distributions
of thin-walled sections. These equations can be used for any shape of cross section, both
open and closed, and are independent of the orientation of the cross section. As well, a
computer oriented step-by-step procedure based on these equations is outlined. Several
examples are also given in the final section of this report to verify this procedure.
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2. Derivations

Geometric discontinuities exist at large hatch openings of ship hulls and on the
locations where open and closed sections mix. They create relative restraints and cause
displacement incompatibilities between segments under applied torsion loading, thus
generating secondary stresses in addition to the primary shear stresses and altering the
overall stress distribution. This section presents the mathematical derivations of torsion
induced displacements and stresses of thin-walled sections.

Several essential assumptions made herein for all of the derivations follow:

1. The beam segment is a prismatic thin-walled section. The term "thin-walled section"
indicates that the thickness of the wall 't' is small in comparison with the total width of
the cross section but it has sufficient thickness so that local buckling is not a problem.
Thus, the shear stresses can be assumed constant through the thickness of the wall but
may vary along the cross section.

2. There is no transverse deformation occurring under applied loads. The shape of the
cross section always remains unchanged.

3. The shear deformation of the cross section is caused by the primary (St-Venant) shear
stresses only. The additional shear deformation caused by the secondary (warping) shear
stresses can be neglected. For an open thin walled section, the net St-Venant shear
stresses are equal to zero through the wall thickness; consequently, there is no shear
deformation.

The sign conventions and coordinate systems of a thin-walled cross section
subjected to bending and torsion for the following theoretical development are illustrated
in Fig. 1. Two coordinate systems are defined; a Cartesian coordinate system which has
x, y and z axes through the centre of gravity of the cross section and a curvilinear
coordinate system, s, which coincides with centreline of the wall of the cross section and
is bounded with boundaries s=O and s=b. The Cartesian coordinate system has
displacements 4, i" and w along the x, y and z axes and a rotation (p around the z axis.
The curvilinear coordinate system, on the other hand, has a displacement 1) along the s
axis. The positive directions of forces and displacements are indicated by arrow heads.
One should keep in mind that the sign conventions used here are different from
Timoshenko's definitions [9].

2.1 General Considerations

A small wall element cut from the thin wall beam as shown in Fig. I has an angle
ox between the s and x axes. The displacements between two coordinate systems can be
related to each other through geometric orientation as:

2



Ty Geometric relation:

0 x -Cosa + -21sinct + h -9

z- aZ az P az

71 d du:=dflsjna

dl
dim=dtcosa

MY diu=h,(p'

Equilibrium: QYy44

aq + -t -0

ds Compatibility:

-,- otd s dz aw Du
qdz Y5 Ts

(q + Lqds)idz dw -as a ' -

(ay + 5z dz)tds

Note: (x is the angle between the 0-x axis and the positive tangential direction
of coordinate, s, measured counterclockwise

Figure 1: Sign conventions and coordinate systems

3



al) . .----. cosa + arj sint + ___ (1)
az az az P az

in which hp is the distance between the tangent of a wall element to the centre of rotation
'p' of the cross section (it can be proved that the centre of rotation is also the shear centre
of the cross section). The non-dependencies of a and hp from the z axis in this equation
indicate that the beam is prismatic.

The equilibrium equations between internal resultants and external forces of a
cross section are:

a dA N (a); fqh ds - Tp (d)

.f. xdA, M (b); fqcos ds = Q, (e) (2)

fa ydA, M~ (C); fqsinci ds - Q~ Mf

where A, is the cross section area. For a small wall element as shown in Fig. 1, the
equilibrium equation in the longitudinal direction of the beam is

q + t 0(3)as az

where q and t are shear flow and wall thickness respectively.

The compatibility relation between displacement i) along the s axis and w along
the z axis can be obtained through shear strain y as:

_w al) (4)
+ __z

The constitutive relation of the material follows Hooke's law (linear elastic
material) as

t (5)
G

where t and G are sLar stress and shear modulus respectively.

2.2 Pure Bending

It is convenient to describe the geometry of a cross section in an arbitrary

4



Cartesian coordinate system (X,Y). The arbitrary coordinate system's origin does not

necessarily coincide with the centre of gravity of the cross section but its axes are parallel

to the cross section's x and y axes so that dX=dx=ds cosx and dY=dy=ds sinot. The

transformation between the two Cartesian coordinate systems can be obtained through the

calculation of the centre of gravity as:

ISXdA
X ; x - X-X cx A, (6)

Y IS , ; y- Y-YC

S A

By assuming no shear deformation caused by transverse shear (Bernoulli-Naviers

hypothesis), using equations (1) and (3) followed by integration along the s axis, the

longitudinal displacement w can be expressed as

w = - 'X- r1 'Y+ w(z) (7)

where w0(z) is the longitudinal displacement in the origin of tI'e system (X,Y) and is an

unknown.

Through the constitutive relation, the axial stress caused by bending can be

obtained as:
E'b -E X- ETI"/Y Ew'(z) (8)

The term w, can be eliminated by knowing the fact that there is no axial resultant for a

beam subjected to pure bending. Letting the axial force N in equation (2a) equal zero and

using the coordinate transformation in equation (6), yields:

= -E "x-ETI"y (9)

The moments of inertia of a plane section with respect to the x and y axes are defined

by the integrals:

_fX2dA I, = f y2dA,, I - f xydAs (10)



The moment curvature relationships of a prismatic beam are expressed as:

- E XdA- Eil " xydA,- M,
S (11)

-E'" xydA, -ETJ Y2dA - M
S Y

By substituting these quantities into equation (9), the axial stress can be rewritten as:

Crb-Iyx -IXyM+ Ixy - IY YX(2S- +y~~~Y M1 IX (12)
b D X D

where D = Iy - I Y2

The integration of equation (2) along the curvilinear coordinate leads to
$

q(s,z) = q*(z) - JD° tds (13)
0

where the constant qb represents the shear flow at the beginning of the integration. The
shear flow, qb vanishes for an open section with the integration starting at a free edge
(shear flow equals zero at this point) and is unknown for a closed section in which the
shear flow of the starting integration point usually is non-zero.

Introducing two integrals which represent static moments of a portion of the cross
section as:

S s

SX = fxtds; SY ytds (14)
0 0

and substituting equation (12) into equation (13), one can obtain
ISIS IxSy-IS

________ _______ (15)
qb = q-I'Y Y - Q ' y (1Q

D D

By defining two quantities

_IS IS ou _ xy (16)
D qby D

6



and with the fact that qb is a linear combination of the shear forces Q, and Q,, equation
(15) can be written as:

I S-lyS IS -I'SD Q) + (q;y- Y QY) (17)q,-(qbA D qD) OU •U O

- (qU+q')Q.q(qb + qb)Q

where superscript "u" can be interpreted as shear flow caused by a unit of shear force.

Since there is no twisting, the unit angle of twist is zero which indicates that

b =0(18)

0 t

Two unknown quantities q,," and qtu can be obtained as

ou b ou

f qb. ds f qbyds

qbX = - -- ; qb = - (19)
fbd 

b d

ti

They are equal to zero for an open section. On the other hand, for a multi-cell section
with n compartments these equations have to be satisfied for each cell and thus result in
n simultaneous linear equations.

The moments of inertia in equations (12) and (15). based on the assumption of a
thin walled section, can be simplified by using integration by parts as:

b b

I f x2dA x2tds= xS lb _fSdx (20)
o 0

Because the first term on the right hand side of the equation vanishes (according to
equation (6), x is normalized so SJ0) and Sx(b) equal zero), the moments of inertia can
be expressed as

b b b b

I"--Sxdx; Iy- -fSydy ; %y - -fSxdy - -fSdx (21)

0 0 0 0

7



2.3 Twisting

There are no lateral displacements, and 1, for a beam subjected only to pure
twisting around its centre of rotation. Thus, equation (3) can be reduced to

- "(hP (22)

According to the basic assumption that the shear deformation of the cross section is only
caused by the St-Venant shear stresses, with equation (4), yields

a w h ( / + q ,

Gt (23)
J P

2At

where A is the area of a closed section surrounded by the thin walls. The second term in
this equation vanishes for an open section.

By defining d2, = hrds and dQ 2 = J/(2At)ds, integrating equation (23) along the
s axis, gives

w = -P /0 1+P/2 + wO(z) (24)

The warping normal stresses can be obtained by using Hooke's law derived as

o = -E 12 + E  " 2
+ Ew/(z) (25)

Letting w'/p"=i2o, and following Kollbrunner's [7] definition with a normalized sectorial
coordinate, will lead to

CO - Q I- Q2-2 .(26)

allowing the axial stress in equation (25) to be simplified as

C - -E p "CO (27)

The quantity Q. in equation (26) can be evaluated using the fact that the resultant axial
force acting on the cross section is equal to zero. Letting N in equation (2a) equal to zero
and integrating warping normal stresses along the s axis yields

8



b

f(f I- 92 2)tds
b (28)

f tds
0

The warping shear flow can be obtained from equation (3) as

6

q, - E "'fco t dS.+ q (29)
0

where q." represents the shear flow at the beginning of the integration point.

By introducing a sectorial static moment of a cut-off portion of the cross section,
$

SW - fo tds (30)
0

the warping shear flow can be expressed as

(= Etp .'S. + q- (31)
=qW + q(D

The warping torsional moment with respect to the point p can be calculated

T.= fq. h ds = fq .ds+ fq. ds(32)
0 P 0 s 0 a

The assumption (3) that the longitudinal shear strain is only caused by the St-Venant
shear flow, and that warping shear flow has no contribution to the shear deformation,
indicates that

b b

fy'ds - fqtds- 0 (33)
0

9



Thus the last term in equation (32) is equal to zero

b b b qtt
J q .ds -Jfq. ds - f -. 2.ds - (34
0 0 2At a Gt (p

Using integration by parts of the first term in equation (32), the warping torsional moment
can be obtained as

b 
q

0 s (35)

-+ f auw tds - -Ep "fw 2tds
0 Dz 0

or
To- -ECp "", (36)

where I., is the warping constant
b

I- fc0 2 tds (37)
0

The warping shear flow can be expressed as

T
q. = _iS +qI a) (38)

q- OU +q'u)T,
(q() to-(

The constant shear flow q(,*U caused by a unit warping moment can be obtained according
to assumption (3) or equation (33) as

b ou

f2 t o (39)

b

10



Defining M,'=T=. the warping normal stress can be expressed as

)(40)

The derivation of the above equations requires that the centre of rotation is known
in advance and that all the nodal coordinates refer to this point. Using geometric
relationships leads to

hPds - h ds-x sinat ds+ypcosa ds (41)

Letting dfl, = h, ds and using the fact that dy=sina ds and dx=cosz ds, the normalized
sectorial coordinate, 0t. can be expressed as

Co = Q C-xPy+ yx- 2 - o (42)

The centre of rotation can be evaluated by using the fact that there are no flexural
moments under pure twisting. Letting equations (2b) and (2c) equal zero gives

b b

fa xtds - 0; fytds 0
o o (43)b b

or fcoxtds -0; fw ytds 0
o 0

Introducing equation (42) into (43), gives
b b b b

fco txtds - xfyxtds+ yfx2tds -fo 2xtds = 0
o o o o (44)
b b b b

fo ytds - x y 2tds + yjpxytds - fn 2ytds = 0
0 0 0 0

Defining

b b

IX = J 2 xtds; IXQ= fn 2xtds
o o (45)
b b

IyoC= f Q cYtds; IY,- fQ 2ytds

0 0



and introducing these quantities into equation (44) and solving two simultaneous linear
equations, the centre of twisting can be obtained as

(y a  - I )I, - (I' 0 - I )lxy

P - D (46)
I m -- In DI (yn C- IyQ )I-y

YP'- D

The quantities in equation (45) can also be simplified by following the same procedure
as equation (20), using integration by parts as

b b

I. c f SdQ 1., - - f SdQ
o o (47)
b b

Iy - -fSd 2; I - -fSydQ 2
o 0

3. Numerical Procedure

The thin-walled section is assumed to be composed of a number of narrow
rectangular segments. Each segment is numbered consecutively, starts with node i and
ends with node j. The coordinates x, y and C for each segment are distributed linearly
along its length; therefore, the static moments S1, Sy and S. vary parabolically along each
element. A three points rule of Newton-Cotes integration can be used to obtain an exact
solution for the cross sectional constants I., Iy, Iiy and I.. The integration of function f(r)
from r=a to r=b can be evaluated as

bff(r)dr - b6a [f(a)+4f(.)+ f(b)] (48)

With the equations derived in the previous section, the step-by-step procedure to evaluate
the cross sectional constants is as follows:

(1) Input nodal coordinates (X2,Yj) and (X,,Y,) of each segment k with respect to an
arbitrary coordinate system (X,Y), its thickness tk and connectivity with other elements.

(2) Calculate coordinates of mid-point, length and area of each segment k
(3) Obtain centre of gravity of the cross section as

12



X*X
X k - ,I + AXk - Xi- X J

Y .+.Y~
Xk 2 Y ,+ AYk = Yi- Yj

2

Lk = AX 2 +AY 2 ; Ak - Lktk

X k A k. YkAk

and the nodal and mid-point coordinate of each segment (x,,y,), (xj,yj) and (Xk,Yk) with
respect to the new origin (Xe, Y,) as

x - X-Xc; y = Y-Y,

(4) Calculate the static moments S,, and Sy of a cut of portion of the cross section for
points i, j and k of each segment as

ASX Ak(X + Xk); S., = S,,+ASS 4

AS, A k(y, + Yk) . S - S ASy
4 y

(5) Obtain the moments of inertia of the cross section as
k AXk  k AYk

I, - k- [. [S (i)+4S(k)+S (j)]; I, . - S (i)+4S (k) S )
n-I 6 6
k AY k AX

P -- [SX(i)+4Sx(k)+S,(j)]; IY,, - Z __.[Sy(i)+4SY(k)+S()1
n-I 6 n-I 6

k6) Calculate Af 2ck as

Ac k - xkAYk- ykAXk

(7) Evaluate Af.2k as

Lk
A 2k - 2K-'A-

tk

13



For an open section, this term is equal to zero. For a multi-cell closed section with n
cells, K is an n x n squared matrix as described in Appendix (A) and A is an n x 1
matrix.

(8) Evaluate I2, Iyk, I,tQ, and Iy. as
k AD ) k AQkc - -Af k [S(i) 4So(k) S,()]; c - k.. ck[s (i).4S,(k)S

n-i 6 n-I 6

Ir, - 1. A .[S (i)+4S.(k)+S (j)]; Iy - >3 I [S (i)+4S (k)+S
n-i 6 n-I 6

and centre of rotation of the cross section (xp,yp) as

(I y-I  )l  -(I n - In)Ixy. (Ita  - 1"0x )Iy -(Iy0 1c-

P D P D

(9) Calculate AK2,, as

A Ik = AQ ck- xPAYk+ ypAXk

(10) Calculate

(Q -Q Q 2k

(1 2) (Q 1 + 2).1 A(Q I +  2)
k

± o I(Q 2)i+(Q I+ Q 2))k
0 k

Z Ak
n-I

(11) Calculate normalized sectorial coordinate of nodal and mid-point of each segment

c0i -  I - Q 2- f

(12) Calculate S. of a cut-off portion for each segment as

AS. Ak(O) 1+ 0) k) S - S,+AS

14



(13) Obtain the warping constant I, as

I~) - '6 2 [SW(i)+4S (k)+S.(j)]

The calculations of normal stresses are straight forward and do not need to be
discussed. Only the procedure for calculating the transverse and the warping shear stresses
are presented here:

(14) Calculate q,, * and qby' as

1  - -S oY Y Cu lKy- xy S.
qbD"- D ' D

(15) Calculate the total shear flow around each cell as

(qb)cl - [Z- [qb (i)+ 4qou(k)+ qu(J)]]c,,

tk

(qu)c,, " .2  k[qo,(i)+ 4qoy(k)+ qo.() ],,

and the two quantities qb, and qb> as
(q•ul - -[K] - '((qO)cll

(qbx} = - bfq~u - 1 o-'qu)

(16) The transverse shear flow caused by a unit shear force can be obtained as
U CU *utq "qou qbu

bx bx ±
U OU *

qby - qby + qby

(17) Calculate qOU as

Cu cqw I
1A)

15



(18) Calculate the total shear flow around each cell as

(qOu) _ [- Z k[q.Ou(i) +4qOu(k) + q cOll,,
tk

and q()u as
{q* ) - -[K] - '((qu ).i,

(19) The warping shear flow caused by a unit shear force can be obtained as
U OU *uqW - q( + qQ

(19) The shear flows caused by different forces now can be evaluated by multiplying
these unit shear flows with applied forces.

The above procedure can be applied on not only the closed sections but also the open
sections by letting the quantities Q2 and q" equal zero.

16



4. Examples

Two examples are presented in this section in tabular form in order to demonstrate
the above procedure. The Arabic numeral in the first row of each table indicates the step
number. The results can be verified with the equilibrium condition.

Example 1: A single-cell box beam with different wall thicknesses is shown in figure
2. (a) Calculate the cross sectional constants and shear centre. (b) Calculate the transverse
shear flow caused by transverse shear forces Q,=-5.5 x 105 kN and Qy=-4.125 x I0 kN.
(c) Calculate the warping shear flow due to a unit warping moment.

[K] = 135 {A) {15x10 4)

Xv = 88.6 Y= 298.6
- yp'~X x=-10.32 y=-13.83

XP 78.28 YP =312.43
t I20 (2 I1 = 56.84 x 107

2 IY 47.49 x l0 J 6.67 x 108

4 1.2,Iy 15.91 X 107

300 Iv = 11.71 x 101°
41 (qou} = (-15372 X 105}

{qby) = {10369 x 105
1 -- 400 -X {qwo-) = (-96.37 x 105 }

Transverse shear flow Warping shear flow

(Normalized)

Figure 2: Single-cell box beam
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(I) (2) (3)I (4) (5) (6)1 (7)1 (8)1

elem t node X X L XkA x ASx  S, 1+4+1 I, Ixy ADU A2a I. Ixfu

I 0 10' 1 -8 10' [ 0 10 10' 10' 1010 1010

-88.6 0

0.29

1 10 200 400 500 5 10 111.4 0.29 6.74 26.96 20.22 92860 111111 6.26 7.49

5.29

2 400 311,4 5.58

4.0

2 10 310 -180 300 3 9.3 221.4 9.58 56.13 -101.03 134.71 74988 66666 42.09 37.42

2.65

3 220 131.4 12.23

1.57

3 10 20 -400 500 10 2 -68.6 13.8 72.8 -291.2 -218.4 57140 55556 41.6 40.44

-8.43

4 -180 -268.6 5.37

-3.35

4 20 -90 180 300 3 -2.7 -178.6 2.02 13.46 24.21 -32.28 75012 66667 10,09 8.97

-2.0

1 0 -88.6 0

21 18.6 -341.06 -95.75 100.04 94.32

88.6 -E./6 56.84 15.91 -16.67 -15.72

18



(1)1 (2)! (3)[ (4)( (5) (8)
lem L n Y AY I.. Ak Y Ak. y AS , S y 1+4+1 I f I " IYck Ivm

ios I W loo I W 10' 10' lo 1010

1 0-298.6 0

-5.59

1 10 150 300 500 5 7.5 -148.6 -5.59 -29.79 -89.37 -119.16 -27.66 -33.1

-1.84

2 300 1.4 -7.43

0.92

2 10 420 240 300 3 12.6 121.4 -6.51 -37.26 -89.42 67.07 -27.94 -24-84

2.72

3 540 241.4 -3.79

8.32

3 10 390 -300 500 10 39 91.4 4.53 19.68 -59.04 -78.72 11.24 10.93

0.82

4 240 -58.6 5.35

-1.78

4 20 120 -240 300 3 3.6 -178.6 3.57 19.63 -47.11 35.33 14-72 13.09

-3.56

1 0 1-28.6 0

21 62.7 -284.94 -95.48 -29.64 -33.92

298.6 -E/6 47.49 15.91 4.94 5.65
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(1)1 (2)1 (9)1 (10) (11) (12) (13)1

elem t . node A L Mllk A(1l l ) f ll- Ql . AS . s 1+4+11 /

los l~~W lo o 1 t

1 0 4830 0

60.38

1 10 5 101450 -9661 -4830.5 -241.53 0 60.38 241.5 -23.3

-60.38

2 -9661 -4830 0

-41.21

2 10 3 75000 8334 -5494 -164.82 -664 -41.21 -184.73 -15.4

21.29

3 -1327 3503 -19.92

87.58

3 20 10 48550 -7006 - -483 0 67.66 230.83 -16 17

-87.58

4 -8333 -3503 -19.92

-21.29

4 10 3 75000 8333 -4166.5 -125 664 -41.21 -184.73 -15.39

-41.21

1 0 4830 0

-1014.35 -70.26

-4830 11.71
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(1)l (2)l (14)1 (15)l (16)j (14)1 (15)1 (16) (17)L (18)1 (19) (20)1

clem L, I kI qb,- 1+4+1 qt.' q,;" 1+4+1 q," q,," 1+4+1 q."

Ias  10, 10s  lOs  11 10"s  1-1 1Ior I kN/mmI

0 113.9 0 -76.8 0 0.71 -308

1 500 50 -41.9 -323.9 72 128.1 720.4 51.3 -5.16 -20.64 -4.45 -607

-156.3 -42.4 208 131.2 0 0.71 -308

2 300 30 -228.3 -1331.1 -114.4 213 1227.5 136.2 3.52 15.78 4.23 67

-261.6 -147.7 167.5 90.7 1.7 2.41 438

3 500 25 -238.6 -1285.2 -124.7 -15.3 17.2 -92.1 -5.78 -19.72 -5.07 1066

-69.2 44.7 -89.1 -165.9 1.7 2.41 438

4 300 30 -15.8 -132.4 98.1 -69.9 -368.7 -146.7 3.52 15.78 4.23 66

01 113.9 0 -76.8 0 0.71 -308

135

113.9 -76.8 0.71
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Example 2: For a two-cell section with constant wall thicknesses as shown figure 3,
calculate (a) the cross sectional constants and shear centre, (b) the transverse shear flow
caused by Q and QY equal to 105 kN, and (c) the warping shear flow caused by a unit
warping moment.

40 40[-1216.56 -56.56] A 4l1400_______ 40056.56 216.5611 24x1043

5 4 1, =287.66 x 10"
1,, = 287.66 x 107

03400 I,Y, -53 .69 x 101
cell 2 3 © 2 1.) 2453.36 x 1010

CS =1 1 00J =2.88 x W0

cell 1I-98xo

(q Ou) - fqo';)- 297i5

6 X x b 5887xIO-11
=, 327.5 Y, 327.5 J -52l7.33xl10 5

=P -65.04 =p -65.04 {q Oul
=P 262.46 YP =262.46 -52 17.33xl10-5j

(Normalized)

Transverse shearnfow Warping shear flow

Figure 3: Mlulti-cell section
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( ) (2) (3) (4) (5) (6) (7)I (S)

em~ . node X 1 X L. A. Y.A AS, S. 1+01 Ix I I *

= I lo- loI I& 10 W loll

1 8o 472.5 0

9.45

1 10 800 0 400 4 32 472.5 9.45 56.7 0 226.8 189016 120000 107.2 68

9.45

2 800 472.5 13.9

7.45

2 10 6M0 -400 400 4 24 272.5 26.35 154.1 -616.4 0 29016 120000 44.7 184.93

3.45

3 400 72.5 29-8

1.45

3 10 400 0 400 4 16 72.5 31.25 187.5 0 750 29016 12000 54.4 22503

1.45

4 400 72.5 32.7

-0.55

4 10 200 -. 1O40D 4 8 -172.5 32.15 188.9 -755.6 0 189016 120000 357.1 226.7

-4.55

5 0 -327.5 27.6

-13,1

5 10 0 0 80 8 0. 327,5 14.5 87 0 -696 261968 24000 228 208+92

-131

6 0 -327.5 1.4

-5.81'

-5.

6 10 4001 800 800 8 32 72.5 -10.9 -4941 -395.28 0 262012 240070 -129.4 -118.54

10.9

1 800 472.5 0

3 400 72.5 0

-0.78

200 -400 565 5.71 11.4 .127.5 -0,78 -10.33 41.32 41.32 0 0 0 0

-643

S 0-327 -711

123.4 -1725.96 322.12 662 79494

327.5 -E/6 287.66 -5369 -1103 -132.5
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(I) -* * (2)1 = ( ) (4)j =5)J = (9)1

node Y AY Y% A, YA Y AS, S, 1+4+1 1, ll, IY VQ

1 10 'I ji 0'i 10 j 0 10' 10' 10 10

1 0 -327.5 0

1 10 20D 400 400 4 8 -127.5 .4.55 -23.3 -932 0 -44 -27.96

-0.55

2 40 72.5 -5.1

1.45

2 10 40 0 40 4 16 72.5 -3.65 -21.9 0 87,58 -6.4 -26.27

1.45

3 40D 72,5 -2.2

3.45

3 10 60 40D 4WU 4 24 272.5 1.25 11.5 46 0 3.3 13.82

7.45

4 80D 472.5 8.7

9.45

4 10 800 0 40D 4 32 472.5 18.15 108.9 0 -435.7 205.8 13071

9,45

5 00 1 472.5 27.6

10.9

5 10 40 -8001 800 8 32 72.5 385 215 -1720 0 563.3 516.01

-5.1

6 0 -327.5 334

262'

-13.1

6 10 0 0 800 8 0-327.5 13.1 78.6 0 628.62 205.9 188-56

-13.1

1 0 -327.5 0

3 40D 72.5 0

-0.78

7 10 200 -400 565 5.7 11.4 -127.5 -0.78 -10.33 41.32 41.32 0 0

-643

6 0 -327.5 -7.21
= - - = - = - =C= = -

37.7 123.4 -1725.% 321.72 928 794.94

327.5 -E/6 287.66 -53.69 -1546 -132.5
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(1)1 (2)1 (9)j (10)1 (11)1 (12)1 13

lo, IO& Wo lo 0 oll

0 .30064 0

-126.1

1 10 4 215032 95032 47516 1900.64 17452 -126.1 193.6 183.9

324.2

2 95032 64968 698.1

974.5

2 10 4 55032 -64968 62548 2501.92 32434 1672.6 9385.9 -6097.8

324.1

3 30D64 0 1997.4

-324.8

3 10 4 55032 -64968 -2420 -96.3 .32494 1672.6 93859 -6097.8

-974.5

4 -34904 -64968 698 1

-824.2

4 10 4 215032 95032 12612 504.48 -17452 -126.1 193.6 1839

126.1

5 60128 30064 0

901.9

5 10 8 21 O000 -30064 45096 3607.t 15032 901.9 48102 -1446.2

300.6

6 30064 0 1202.5

-300.6

6 10 8 210000 -30064 15032 1202.56 -15032 901.9 48102 .1446.2

-901.9

30O64 -30064 0

31 30064 0 0

0

7 10 5.7 0 0 30064 1713.65 0 0 0 0

0

6 300,64 01]

11334.1 -147202

30064 2453.36
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-O1 10' lo' 10 10' 10 10 10" 10 KN/m

0 3537 0 35.37 0 326 70.74

1 400 40 .3098 -188.57 439 0,03 4578 45.4 5.14 -7.29 37.74 49.79

-6463 -2.2 5.66 41.03 -284s 4.15 11.75

2 40o 40 -9245 -5,0.3 57.08 -4.57 -24.73 30.8 -68.12 .382.59 -35.58 .26.28

-105.A5 -704 .12.11 23.26 -81.42 -48.82 -47.22

.10535 -23.25 .12.11 70.49 -81.42 -48.82 47.22

3 400 40 -113.4 -683.09 -308 -25.51 -167.46 57.09 -68.18 .382.59 -35.58 26-29

-123.63 -41.03 -5331 29.29 .2845 4.15 -11.74

4 400) 40 -128 -753.59 -454 .i6.98 -519.19 -4.38 5.14 -7.89 37.74 -49.78

-117.96 -35.36 -117.96 -3536 0 32.6 -70.72

5 So 80 .71 11 -457.9 4.49 .14242 -832.88 -65.82 -36.76 -196.06 -4.16 -61.33

.27.5 55.1 .121.24 -3864 -49.02 -16.42 -16.46

3.31 38.68 .9046 -55.09 -49.02 -16.42 -16.46

6 I00 so 30.45 125.11 65.82 -39-86 -249.9 -4.49 -36.76 -196.06 -4.16 61.33

0 35.37 0 35.36 0 326 70.73

0 -4723 0 -47.23 0 0 94.46

7 565 56.3 3.33 43.32 -439 333 43.32 -43.9 0 0 0 27.8

3.33 -17.23 30 .17.23 0 0 34.46

35.37 35-37 32,6

32.6 826 32.6
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5. Concluding Remarks

This report has presented the complete mathematical derivations of the equations
used for the calculation of cross sectional constants and stress distributions of thin-walled
sections. The derivations are based on the same assumptions as Kollbrunner's [7] open
section and extend to multi-cell closed sections. These equations can be used for any
shape of cross section, both open and closed, and are independent of the orientation of
the cross section. A numerical procedure based on these equations has been outlined and
verified with several examples. It can be easily implemented into the current SCRAP
program.

It should be noted that these equations, which are based on certain assumptions,
have some limitations. The major two are that the derivations deal only with prismatic
members, and cross sections retain their shape during deformation. Thus, the solutions of
the equivalent beam models can only be improved with increasing numbers of beam
elements, and are only valid for the unbuckled state of the ship hull's elastic response.
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Appendix A - St-Venant Torsion

The governing differential equation of a prismatic beam subjected to St-Venant
torsion is

TS - GJp' (A1)

where J is torsional constant.

For an open thin-walled section which is composed of a number of thin
rectangular elements, the torsional constant can be computed as the sum of the values for
the individual element.

J = Z 3bt (A2)
,3 1

where i is the ih element. The shear stress is linearly distributed across the thickness of
the wall with a zero average. Its maximum value of shear stress is at the wall surface and
can be written as

(t ), st  
(A3)

J

For a closed thin-walled section with multi-cells, the torsional constant is

J = 4{A}T[K]-'(A) (A4)

where A, is the area of cell i and the entries in matrix [K] are
n-ds

i-I t (A5)

k, - ds
ij t

The subscript "ii" represents a summation performed along walls of cell 1 and "ij"
represents a summation performed along common walls between cell i and j.
For a single cell section, equation (A4) can be reduced to

4A2  (A6)

t
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For a beam subjected to a specified torsion T, the rate of twisting angle (P' can be

obtained from equation (Al). The St-Venant shear flow (q,), in each cell then can be

found as

{q) - 2Gp '[K]-{'(A
T (A7)
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Appendix B - Open Section - Example

For a channel section with constant wall thickness as shown below, calculate the
shear centre and warping constant and verify the results.

The exact solutions of the shear centre and warping constant of a channel section with
constant wall thickness are

Sd th'b 2

> 27 12 6bt + ht 
G_ 2b4 2

300 d

14-_400-- 4 X

(= (2)1 (3)J (4)1 (5) (6)1 (8]
l, ,,n node€ X AX I. Au XA,. &Sr Sx 144+ l, 1 " All l ,,I 10'1 0' ' 10 10' 10 '11

1 0 -151 -7.23

-1.28

1 10 200 400 500 5 10 49 -2.51 -4605 -184.2 -138.2 40700 -1874

3.73

2 400 249 -4.78

3,06

2 10 310 -180 300 3 9.3 159 -1.72 -11.66 20.98 -27.98 75060 -8.75

1.71 I

3 220 69 0

4 -10 -331 o

-4.29

20 -90 180 300 3 -27 -241 -4.29 -24.39 -43.9 58.54 74940 -1828

294

1 0 -151 -723

II 166 -207.22 -I07. -4517

151 -E/6 3454 17.93 7631
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Xc= 151; Y, = 215

xp= 118.85; y, =-160.16

Xp= 269.85; Yp = 54.85

_(2) (3) (4) (5)(8)

elearn t. n de Y Y L., A . Y,, y AS y S y 1+4 +1 Iv  
I Y I-€a,

1 0 , j0[d 1 
. ] 1 0 1 0 , l 0 ly ,

1 0 -215 -2.86

-3.5

10 150 300 5(X 5 7.5 -65 -6.36 -34.41 -103.23 -137.64 .14

0.25

2 300 85 -611

2.18

2 10 420 240 300) 31 116 205 -3.93 .21.83 -52,39, 39.29 -1638

3.98

3540 325 0

4 240 25 0

3 20 120 -240 300 3 36 -95 -0.53 -4.98 11.95 -8.96 -3.73

-2.33

0-215 -2.86

11 23.7 -143.63 -107.31 -34.11

215 -E/6 23.95 17,88 5.69
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01 (2)1 (9)I (10) (11) (12) (13)

en I, node A, AR,~ 0,41f, 0. IAs.I S. 1++ 1.

- 100' 1 l 0' I I op I 101.

1 74635 29360 -244

367

1 10 5 .59019 2256 0 123 4 -236

-367

2 15616 -29360 -244

-159

2 10 3 75365 1599 8140 -403 -1856 -1392

403

3 90981 45640 0

4 0 -45640 0

-403

3 10 3 74635 1120 .8140 -403 -1856 -1392

159

- - 74635 29360 -24
-

4975 .2786.36

45640 46441
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